LADD syndrome with glaucoma is caused by a novel gene
نویسندگان
چکیده
PURPOSE Lacrimo-auriculo-dento-digital (LADD) syndrome is an autosomal dominant disorder displaying variable expression of multiple congenital anomalies including hypoplasia or aplasia of the lacrimal and salivary systems causing abnormal tearing and dry mouth. Mutations in the FGF10, FGFR2, and FGFR3 genes were found to cause some cases of LADD syndrome in prior genetic studies. The goal of this study is to identify the genetic basis of a case of LADD syndrome with glaucoma and thin central corneal thickness (CCT). METHODS Whole exome sequencing was performed, and previously described disease-causing genes (FGF10, FGFR2, and FGFR3) were first evaluated for mutations. Fifty-eight additional prioritized candidate genes were identified by searching gene annotations for features of LADD syndrome. The potential pathogenicity of the identified mutations was assessed by determining their frequency in large public exome databases; through sequence analysis using the Blosum62 matrix, PolyPhen2, and SIFT algorithms; and through homology analyses. A structural analysis of the effects of the top candidate mutation in tumor protein 63 (TP63) was also conducted by superimposing the mutation over the solved crystal structure. RESULTS No mutations were detected in FGF10, FGFR2, or FGFR3. The LADD syndrome patient's exome data was searched for mutations in the 58 candidate genes and only one mutation was detected, an Arg343Trp mutation in the tumor protein 63 (TP63) gene. This TP63 mutation is absent from the gnomAD sequence database. Analysis of the Arg343Trp mutation with Blosum62, PolyPhen2, and SIFT all suggest it is pathogenic. This arginine residue is highly conserved in orthologous genes. Finally, crystal structure analysis showed that the Arg343Trp mutation causes a significant alteration in the structure of TP63's DNA binding domain. CONCLUSIONS We report a patient with no mutations in known LADD syndrome genes (FGF10, FGFR2, and FGFR3). Our analysis provides strong evidence that the Arg343Trp mutation in TP63 caused LADD syndrome in our patient and that TP63 is a fourth gene contributing to this condition. TP63 encodes a transcription factor involved in the development and differentiation of tissues affected by LADD syndrome. These data suggest that TP63 is a novel LADD syndrome gene and may also influence corneal thickness and risk for open-angle glaucoma.
منابع مشابه
Novel frameshift mutation in the KCNQ1 gene responsible for Jervell and Lange-Nielsen syndrome
Objective(s): Jervell and Lange–Nielsen syndrome is an autosomal recessive disorder caused by mutations in KCNQ1 or KCNE1 genes. The disease is characterized by sensorineural hearing loss and long QT syndrome. Methods: Here we present a 3.5-year-old female patient, an offspring of consanguineous marriage, who had a history of recurrent syncope and congenital sensorineural deafness. The patient ...
متن کاملA Novel Nonsense mutation in PANK2 Gene in Two Patients with Pantothenate Kinase-Associated Neurodegeneration
Pantothenate kinase- associated neurodegeneration (PKAN) syndrome is a rare autosomal recessive disorder characterized by progressive extrapyramidal dysfunction and iron accumulation in the brain and axonal spheroids in the central nervous system. It has been shown that the disorder is caused by mutations in PANK2 gene which codes for a mitochondrial enzyme participating in coenzyme A biosynthe...
متن کاملAtypical Omenn Syndrome Due to RAG2 Gene Mutation, a Case Report
Severe Combined Immunodeficiency (SCID), characterized by a profound decrease in both the number and function of T cells, is related to more than 20 different mutations. Recombination-activating gene (RAG) 1 and 2 seem to be two of the most common forms presenting with various manifestations, including typical SCID, Omenn syndrome (OS), atypical SCID (AS), or delayed onset combined immunodefici...
متن کاملNovel mutation in the SLC19A2 gene in Thiamine-responsive megaloblastic anemia (Rogers’ syndrome)
Introduction: The Thiamine Transporter gene SLC19A2 is the only gene known to be associated with TRMA. This syndrome is a trial clinical characterized by megaloblastic anemia, nonautoimmune diabetes mellitus and sensory-neural hearing loss. Methods: Described here are three children from consanguineous Iranian families with thiamine – responsive megaloblastic anemia (TRMA) or Rogers' syndrome....
متن کاملIdentification of a Novel Mutation in CNNM4 Gene in an Iranian Family with Jalili Syndrome
Background and Objectives: Jalili syndrome is a rare autosomal recessive genetic disorder, which so far, only 33 families with this disorder have been reported worldwide. Patients with this disease simultaneously develop cone-rod retinal dystrophy (CRD) and amelogenesis imperfecta (AI). In this study, a mutation causing Jalili syndrome, was investigated in an Iranian family. Case Report: The...
متن کامل